Symmetry actions and brackets for adjoint-symmetries. I: Main results and applications
نویسندگان
چکیده
Abstract Infinitesimal symmetries of a partial differential equation (PDE) can be defined algebraically as the solutions linearisation (Frechet derivative) holding on space to PDE, and they are well-known comprise linear having structure Lie algebra. Solutions adjoint PDE called adjoint-symmetries. Their algebraic for general systems is studied herein. This motivated by correspondence between variational conservation laws arising from Noether’s theorem, which has modern generalisation non-variational PDEs, where infinitesimal replaced adjoint-symmetries, multipliers (adjoint-symmetries satisfying certain Euler-Lagrange condition). Several main results obtained. Symmetries shown have three different actions These used construct bilinear adjoint-symmetry brackets, one pull-back symmetry commutator bracket properties bracket. The brackets do not use or require existence any local (Hamiltonian Lagrangian) thus apply systems. One encode pre-symplectic (Noether) operator, leads construction symplectic 2-form Poisson evolution generalised KdV in potential form illustrate all results.
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Brane Effective Actions, Kappa-Symmetry and Applications
This is a review on brane effective actions, their symmetries and some of their applications. Its first part covers the Green-Schwarz formulation of single M- and D-brane effective actions focusing on kinematical aspects: the identification of their degrees of freedom, the importance of world volume diffeomorphisms and kappa symmetry to achieve manifest spacetime covariance and supersymmetry, a...
متن کاملGraded Poisson - Sigma Models I : Complete Actions and Their Symmetries
The formalism of graded Poisson-Sigma models allows the construction of N = (2, 2) dilaton supergravity in terms of a minimal number of fields. For the gauged chiral U(1) symmetry the full action, involving all fermionic contributions , is derived. The twisted chiral case follows by simple redefinition of fields. The equivalence of our approach to the standard second order one in terms of super...
متن کاملSymmetries and Symmetry Breaking *
In understanding the world of matter the introduction of symmetry principles following experimentation or using the predictive power of symmetry principles to guide experimentation is most profound. The conservation of energy, linear momentum, angular momentum, charge, and CPT involve fundamental symmetries. All other conservation laws are valid within a restricted subspace of the four interact...
متن کاملDescent Construction for GSpin Groups: Main Results and Applications
The purpose of this note is to announce an extension of the descent method of Ginzburg, Rallis, and Soudry to the setting of essentially self dual representations. This extension of the descent construction provides a complement to recent work of Asgari and Shahidi [A-S] on the generic transfer for general Spin groups as well as to the work of Asgari and Raghuram [A-R] on cuspidality of the ext...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Applied Mathematics
سال: 2022
ISSN: ['0956-7925', '1469-4425']
DOI: https://doi.org/10.1017/s0956792522000304